본문 바로가기
반응형

Data Science/Tensorflow & Pytorch4

[Tensorflow] 회귀(Regression) 신경망 실습 본 실습은 Sklearn Boston 데이터 셋을 활용했습니다 1. Import Library and Random seed import numpy as np import tensorflow as tf np.random.seed(0) tf.random.set_seed(0) 2. Load Dataset and check target # target check - continuous from sklearn import datasets raw_boston = datasets.load_boston() X = raw_boston.data y = raw_boston.target print(X.shape) print(set(y)) 3. Train / Test Split # Split from sklearn.model_.. 2022. 1. 7.
[Tensorflow] 분류(Classification) 신경망 실습 본 실습은 크게 3가지 데이터 셋을 활용했습니다. 1. Iris Dataset 2. MNIST 3. MNIST Fashion Iris Classification 1. Load dataset from sklearn.datasets import load_iris iris = load_iris() X = iris.data y = iris.target 2. OnehotEncoding # One hot encoding from sklearn.preprocessing import OneHotEncoder enc = OneHotEncoder(sparse=False, handle_unknown='ignore') enc.fit(y.reshape(len(y), 1)) y_onehot = enc.transform(y.res.. 2022. 1. 7.
[Tensorflow] Tensorflow로 신경망 구조 만들기 텐서플로로 신경망 구조를 만드는 방법은 크게 2가지가 있다. 1. 시퀀스 API 사용 2. 함수형 API 사용 시퀀스 API 사용 - 텐서플로에서 제공하는 Sequential()을 통해 딥러닝 구조의 층을 쌓을 수 있음 - Sequential() 선언 후, model.add() 함수를 입력함으로써 실제로 층을 쌓음 - Sequential() : 신경망 모형을 선언, 생성하는 역할 from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense model = Sequential() model.add(Dense(100, activation='relu', input_shape=(32, 32, 1)) model.add.. 2022. 1. 7.
딥러닝 기본 용어 잡기(Introduction to Deep Learning) 딥러닝 : 인공신경망 기반의 학습 방식 - 수많은 뉴런이 서로 연결되어 신호를 서로 전달하는 것처럼 퍼셉트론이 연결되어 연산 결과를 주고 받음 퍼셉트론 : 신경망의 최소 단위 - 입력값(input), 가중치 벡터(w), 출력값(output) - 입력값 벡터와 가중치 벡터의 내적값이 활성화 함수(Activation Function)를 거쳐 최종 출력값을 반환 - 활성화 함수는 시그모이드(Sigmoid), 렐루(Relu), 리키 렐루(Leaky Relu) 등이 있음 - 편향(b, bias) : 가중합에 더해지는 상수 다층 퍼셉트론 : 퍼셉트론의 층 여러 개 - XOR 등 하나의 퍼셉트론으로는 해결할 수 없었던 문제를 해결할 수 있게 함 - 인공 신경망(Artificial neutral network), 줄여.. 2022. 1. 7.
반응형