[seaborn] 데이터 정리 및 다양한 시각화 실행
데이터 정리 - 우리가 사용할 데이터프레임 crime_anal_station 은 다음과 같다. - 일단 해당 데이터를 활용해서, '구별'을 인덱스로 하여, 값의 합계를 나타낸 피봇테이블을 만들었다. crime_anal_gu = crime_anal_station.pivot_table( #여기서 pd.pivot_table(crime_anal_station, ~ 으로 시작해도 된다. index="구별", aggfunc=np.sum, ) - 여기서 우리는 lat, lng 컬럼이 필요가 없기 때문에, 삭제한다. (drop()을 활용했다.) crime_anal_gu.drop(["lat", "lng"], axis=1, inplace=True) - 우리가 궁금한 수치는, 각 범죄별 '검거율'이다. 예를 들면 살인의 검..
2021. 10. 14.